Reordering for Better Compressibility

نویسندگان

  • Mohammadreza Mahmudimanesh
  • Abdelmajid Khelil
  • Neeraj Suri
چکیده

Compressed Sensing (CS) is a novel sampling paradigm that tries to take data-compression concepts down to the sampling layer of a sensory system. It states that discrete compressible signals are recoverable from sub-sampled data, when the data vector is acquired by a special linear transform of the original discrete signal vector. Distributed sampling problems especially in Wireless Sensor Networks (WSN) are good candidates to apply CS and increase sensing efficiency without sacrificing accuracy. In this paper, we discuss how to reorder the samples of a discrete spatial signal vector by defining an alternative permutation of the sensor nodes (SN). Accordingly, we propose a method to enhance CS in WSN through improving signal compressibility by finding a sub-optimal permutation of the SNs. Permutation doesn't involve physical relocation of the SNs. It is a reordering function computed at the sink to gain a more compressible view of the spatial signal. We show that sub-optimal reordering stably maintains a more compressible view of the signal until the state of the environment changes so that another up-to-date reordering has to be computed. Our method can increase signal reconstruction accuracy at the same spatial sampling rate, or recover the state of the operational environment with the same quality at lower spatial sampling rate. Subsampling takes place during the interval that our reordered version of the spatial signal remains more compressible than the original signal. Compressive Wireless Sensing; Spatial Sampling; Reordering; Permutation; Compressibility; Compressed Sensing;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Compression-Boosting Transform for Two-Dimensional Data

We introduce a novel invertible transform for two-dimensional data which has the objective of reordering the matrix so it will improve its (lossless) compression at later stages. The transform requires to solve a computationally hard problem for which a randomized algorithm is used. The inverse transform is fast and can be implemented in linear time in the size of the matrix. Preliminary experi...

متن کامل

Analyzing the Potential of Source Sentence Reordering in Statistical Machine Translation

We analyze the performance of source sentence reordering, a common reordering approach, using oracle experiments on German-English and English-German translation. First, we show that the potential of this approach is very promising. Compared to a monotone translation, the optimally reordered source sentence leads to improvements of up to 4.6 and 6.2 BLEU points, depending on the language. Furth...

متن کامل

Chunk-Level Reordering of Source Language Sentences with Automatically Learned Rules for Statistical Machine Translation

In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results ar...

متن کامل

Syntax and Structure in Statistical Translation

In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results ar...

متن کامل

Learning Lexicalized Reordering Models from Reordering Graphs

Lexicalized reordering models play a crucial role in phrase-based translation systems. They are usually learned from the word-aligned bilingual corpus by examining the reordering relations of adjacent phrases. Instead of just checking whether there is one phrase adjacent to a given phrase, we argue that it is important to take the number of adjacent phrases into account for better estimations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010